Сегодня - 23.10.2018

Наночастицы нитрида титана повысят производительность оптоволоконных линий связи

14 июня 2018
 
Ученые Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с коллегами из Сибирского федерального университета, Сибирского государственного университета науки и технологий им. М.Ф. Решетнева и Королевского технологического института (Швеция) предложили использовать устройство на основе наночастиц нитрида титана для фильтрации шумов в оптоволоконных линиях связи. Эта возможность связана со способностью этих частиц, обладающих свойством плазмонного резонанса, вырезать узкий диапазон падающего на них излучения. Результаты исследования опубликованы в журнале Photonics and Nanostructures - Fundamentals and Applications
 
Плазмоника — быстро развивающаяся область оптики, изучающая материалы, в которых наблюдается поверхностный плазмонный резонанс. Характерная особенность этого явления — резкое локальное усиление электромагнитного поля при определенной длине волны падающего на материал излучения. Плазмонно-резонансные системы нашли широкое применение в различных областях. Например, с их помощью удалось повысить чувствительность спектральных методов анализа, разработать биосенсоры, методы терапии злокачественных новообразований, увеличить эффективность солнечных элементов.
 
Красноярские ученые предложили использовать наночастицы нитрида титана, обладающие плазмонными свойствами, для создания управляющих оптических элементов в оптоволоконных сетях. «Когда на эти частицы попадает излучение, то при определенных условиях возникает эффект узкого резонанса, с помощью, которого, мы можем, как скальпелем, «вырезать» определенные длины волн, то есть создавать фильтры на пропускание или отражение помех», — объяснил научный сотрудник отдела вычислительной физики Института вычислительного моделирования ФИЦ КНЦ СО РАН кандидат физико-математических наук Александр Владимирович Ершов.
 
Физическая суть эффекта достаточно проста. Под воздействием электрического поля в световой волне отрицательно заряженные электроны в частицах начинают смещаться относительно положительно заряженных ядер. В результате этого за счет притяжения электронов к ядрам возникает электростатическое взаимодействие, что приводит к возникновению колебаний, которые имеют резонанс на определенной частоте. Частота резонанса зависит от материала и формы частиц.
 
Отдельный интерес представляет взаимодействие излучения с решетками, состоящими из плазмонных наночастиц. Если правильно подобрать расстояние между частицами, решетка на определенной длине волны в крайне узком диапазоне частот поглощает или отражает внешнее излучение.
 
Выбор нитрида титана в качестве основы для фильтра помех не случаен. Классические плазмонные материалы в условиях реальной эксплуатации утрачивают свои резонансные свойства при сильном нагреве излучением. Устройство из нитрида титана, по оценкам ученых, будет обладать высокой тепловой стойкостью и долговечностью. Также ученые показали, что у этого материала резонанс смещен в ближний инфракрасный диапазон, в котором работают устройства связи. Немаловажная особенность — стоимость производства наночастиц нитрида титана невысока.
 
Управляющие оптические элементы требуются для работы с телекоммуникационным диапазоном длин волн, когда возникает задача пропускания через одну линию оптоволоконной связи большого количества потоков излучения. По словам Александра Ершова, использование плазмонных наночастиц открывает новые возможности для повышения эффективности управляющих элементов из-за их способности поглощать свет в узком диапазоне длин волн.
 
Группа научных коммуникаций ФИЦ КНЦ СО РАН
 
Поделись с друзьями: 
 

comments powered by HyperComments

Система Orphus