Сегодня - 23.09.2020

Сибирские ученые получили топологические изоляторы на основе селенида висмута новыми способами

16 июля 2020
 
Тонкие пленки селенида висмута получили двумя методами: вырастив их на подложках из слюды и электрохимически расщепив объемные кристаллы Bi2Se3, причем ученые добились формирования рекордно больших площадей образцов тонких пленок. Селенид висмута относится к классу топологических изоляторов ― соединений, которые из-за особенностей своих свойств проводят спин-поляризованный электрический ток только по поверхности. При совмещении графена и электрохимически отслоенного селенида висмута удалось увеличить подвижность носителей заряда в пленках, что имеет большое значение для создания быстродействующих электронных устройств, работающих с минимальными тепловыми потерями. Результаты совместных работ специалистов Института физики полупроводников им. А. В. Ржанова СО РАН, Института геологии и минералогии им. В.С. Соболева СО РАН, Новосибирского государственного университета, Новосибирского государственного технического университета опубликованы в журналах Materials Research Bulletin и Nanotechnology
 
На поверхности тополологических изоляторов можно управлять током электронов имеющих одинаково направленные спины (спин-поляризованных). Практическое применение этого свойства позволит значительно уменьшить тепловыделение, которое существует в привычных электронных приборах, а значит увеличить быстродействие и скорость передачи информации. 
 
Однако идеальные, предсказанные теоретически, свойства топологических изоляторов отличаются от тех, что наблюдаются в реальности: кристалл в объеме всё же проводит ток из-за структурных несовершенств. Чтобы воспользоваться технологически привлекательными характеристиками соединений, нужно создать им специальные условия. Решить эту задачу можно, получив идеальный бездефектный кристалл (что пока недостижимо), или тонкую пленку селенида висмута ― по сути, поверхность в чистом виде: ее влияние становится заметным при толщинах пленки менее 100 нанометров.
 
Кристалл селенида висмута
   Кристалл селенида висмута
 
Обычно тонкие полупроводниковые соединения выращивают дорогостоящим и сложным методом молекулярно-лучевой эпитаксии. Cтаршему научному сотруднику ИГМ СО РАН кандидату геолого-минералогических наук Константину Александровичу Коху удалось создать сравнительно простую по конструкции установку, в которой используется газотранспортный метод роста. Он является существенно более дешевым и в эксплуатации и в разработке.
 
«Внешне реактор похож на длинную пробирку, расположенную горизонтально. С одной стороны реактора происходит нагрев порошка селенида висмута: пары соединения перемещаются в более холодный участок установки и там осаждаются на подложку из слюды. На ней начинается рост тонкой кристаллической пленки благодаря определенному сходству кристаллической структуры слюды и селенида висмута, которое приводит к возникновению химических (ван-дер-ваальсовых) связей между этими соединениями», ― объясняет Константин Кох.
 
У синтезированных кристаллических пленок, ученые ИФП СО РАН обнаружили несколько интересных для практического применения свойств. Во-первых, большие по площади размеры объектов ― около сантиметра в поперечнике,  во-вторых, высокая подвижность носителей заряда: именно от этой характеристики зависит быстродействие электроники. И, в-третьих, новые структуры могут использоваться, как электроды, прозрачные для инфракрасного излучения.
 
Подбор оптимальных ростовых условий занял около полугода: специалисты ИГМ СО РАН варьировали температуры, продолжительность роста, руководствуясь сведениями об электрофизических  характеристиках пленок, которые предоставляли ученые ИФП СО РАН. Выяснилось, что лучшие по электрофизическим параметрам образцы формируются при температуре около 500 градусов Цельсия и на расстоянии 4―6 сантиметров от нагревательного элемента. Для диагностики структурного совершенства пленок, толщины, поэлементного состава использовались дифракционные методы, Рамановская спектроскопия, сканирующая электронная микроскопия. 
 
Другой способ получения тонких пленок селенида висмута, модифицированный той же исследовательской группой ― электрохимическое отщепление от объемного кристалла Bi2Se3. Объемные кристаллы для эксперимента выращивались методом Бриджмена-Стокбаргера, их также предоставил Константин Кох. Кристалл выступал в качестве одного из электродов и погружался в электролит ― проводящую жидкость определенного состава. В результате подачи напряжения в цепь, выделялись пузырьки газов, в частности водорода, которые и отслаивали пленки. Меняя электрическое напряжение и состав электролита, ученые ИФП СО РАН подобрали оптимальные условия отщепления.
 
Пленки селенида висмута
   Пленки селенида висмута
 
 «На данный момент этот метод позволяет получать наиболее совершенную поверхность пленок ― атомно-гладкую. Варьируя условия расщепления, мы можем получать пленки с различной толщиной или латеральными размерами», ― говорит научный сотрудник ИФП СО РАН кандидат физико-математических наук Надежда Александровна Небогатикова.
 
Оказалось, что при создании слоистых структур, состоящих из  электрохимически отщепленных пленок Bi2Se3, перенесенных на графеновые «листы», такие характеристики пленок как проводимость и подвижность носителей заряда становятся лучше. Причем эффект наблюдался даже при комнатной температуре, на открытом воздухе, а не только в особо чистых условиях, что особенно важно для практических применений. 
 
Площади образцов тонких пленок селенида висмута, полученные новосибирскими учеными, как первым, так и вторым методом, составили от сотен микрон до квадратных сантиметров, что значительно больше, чем синтезировали ранее другие научные группы, в том числе за рубежом.
 
Исследования выполнялись при поддержке Российского научного фонда, Российского фонда фундаментальных исследований: проекты № 17-12-01047 и  № 18-29-12094, соответственно.
 
Пресс-служба ИФП СО РАН
 
Фото Олега Терещенко и Надежды Небогатиковой
 
Поделись с друзьями: 

Система Orphus