Антисмысловые (с англ. — antisence) олигонуклеотиды — один из наиболее разработанных классов терапевтических нуклеиновых кислот. Они получили свое название из-за того, что комплементарны (имеют противоположную значимость) матричным РНК (мРНК), а также РНК вирусов и мРНК бактерий, кодирующим белки, то есть молекулам со значащей, смысловой последовательностью.
Антисмысловые олигонуклеотиды способны подавлять экспрессию любого гена на уровне матричной РНК, расщепляя ее. Другой механизм действия — блокирование трансляции (синтеза белка), когда при связывании олигонуклеотида рибосома просто не может его вытеснить. В итоге укороченный белок с неправильной структурой утилизируется и не накапливается в клетке.
«Существует ряд белков, гиперэкспрессия которых ассоциируется с раком, воспалениями и так далее. Например, при вирусной инфекции в клетках синтезируются вирусные РНК и белки. Антисмысловой нуклеотид может подавить их синтез, а следовательно, и распространение инфекции. На данный момент основная проблема использования терапевтических нуклеиновых кислот — доставка в нужное место: при внутривенном введении антисмысловые олигонуклеотиды распространяются по всему организму и быстро выводятся почками, не успевая оказать максимальное воздействие», — рассказывает заведующая лабораторией биохимии нуклеиновых кислот Института химической биологии и фундаментальной медицины СО РАН доктор биологических наук Марина Аркадьевна Зенкова.
Для решения этой проблемы специалисты ИХБФМ СО РАН разрабатывают системы доставки терапевтических нуклеиновых кислот, которые смогут не только отправить препарат в точку назначения, но и способствовать сохранению его активности в клетках, например в опухоли. В качестве систем доставки сибирские ученые используют комплексы на основе катионных липосом: частиц размером до 100 нанометров, построенных из катионных и нейтральных липидов (жирорастворимых веществ). Катионные липосомы связываются с антисмысловыми олигонуклеотидами и защищают их от действия неблагоприятных факторов в крови, а также способствуют проникновению в клетки, так как по строению напоминают клеточные мембраны.
Важнейший компонент системы доставки — катионные (положительно заряженные) липиды уникального строения — разработка специалистов московского Института тонких химических технологий им. М.В. Ломоносова (сейчас — Московский технологический университет, Институт тонких химических технологий). Такие липиды полностью биодеградируют в организме человека, оставляя только природные молекулы, которые не являются токсичными. К тому же вещества не вызывают включение специфического иммунного ответа и одинаково активно работают с различными терапевтическими нуклеиновыми кислотами.
Кроме того, на каждой клетке существует набор рецепторов — сложных белковых структур, способных прочно связываться с определенной молекулой — лигандом. Если включить его в состав комплекса, то такие «адресованные» липосомы вкупе с антисмысловыми олигонуклеотидами будут связываться с клетками, на поверхности которых есть рецепторы к этому лиганду.
«Обычно опухолевые клетки содержат на поверхности рецепторы к фолиевой кислоте. Именно поэтому она часто используется в качестве адресующего лиганда в различных системах доставки лекарств, — поясняет Марина Зенкова. — Вообще, фолиевая кислота необходима для нормального функционирования клетки. Однако если последняя начинает гиперэкспрессировать рецепторы к фолиевой кислоте на поверхности, скорее всего клетка уже приобретает злокачественный фенотип. Поэтому мы включили в состав липосом эту кислоту, чтобы та обеспечила специфическое, направленное взаимодействие с опухолевыми клетками».
Преимущество липосомальных систем, разработанных учеными, заключается в том, что их можно приготовить заранее. Для этого химически синтезированные компоненты липосом, включая фолат-содержащую направляющую компоненту, смешивают в органическом растворителе и высушивают в вакууме. Затем получившуюся липидную пленку суспендируют в воде, обрабатывают ультразвуком, расфасовывают и хранят в холодильнике до использования. Если нужно доставить нуклеиновую кислоту, ее смешивают с этим раствором в определенных пропорциях и вводят в организм — то есть подобный вариант лечения является сравнительно недорогим. Нуклеиновая кислота в комплексе с липосомами быстро добирается до клеток опухоли и остается в них в значительном количестве даже через 24 часа после инъекции.
«Сейчас мы пытаемся сделать еще более сложные системы адресации, ищем возможности присоединения пептидов, антител, которые могут стимулировать захват комплексов определенными клетками. Проблема в том, что у наиболее злокачественных опухолей мало поверхностных рецепторов — опознавательных знаков, поэтому надо еще многое проработать», — заключает Марина Зенкова.
Алёна Литвиненко
Фото: предоставлено Мариной Зенковой (1), Александры Федосеевой (2, анонс)