Конрад Вильям Рентген, открывший «икс» излучение, нашёл способ заглянуть внутрь непрозрачных для видимого света объектов и тем самым внёс существенный вклад в науку, а особенно в медицину. Однако обычные рентгеновские установки не имеют высокого пространственного разрешения. Если вы решите исследовать микрообъекты, то увидите лишь смазанное пятно. Новосибирские физики придумали, как решить эту проблему с помощью синхротронного излучения (СИ).
«Рентгеновское излучение обладает большой проникающей способностью. Распространяясь в веществе, оно в зависимости от плотности объекта с определенной вероятностью поглощается или рассеивается. Таким образом, регистрируя интенсивность прошедшего потока, можно получить информацию о распределении плотности внутри исследуемого образца. Проблема в том, что пока не существует дешевого и высокочувствительного прибора, непосредственно фиксирующего рентгеновский свет и обладающим высоким пространственным разрешением. Поэтому наиболее простой способ его зарегистрировать это излучение — конвертировать его в видимый диапазон, который потом фиксируется специальной фотокамерой», — рассказывает старший лаборант ИЯФ СО РАН Евгений Анатольевич Козырев.
От толщины сцинтиллятора (иначе — люминофора), отвечающего за это преобразование, во многом зависит точность получаемого изображения. «Для наблюдения маленьких объектов очень важно, чтобы он был тонкий и имел высокую эффективность, а также обладал структурой, не портившей пространственное разрешение», — объясняет старший научный сотрудник ИЯФ СО РАН кандидат физико-математических наук Александр Сергеевич Попов.
Рентгеновское излучение после прохождения исследуемого объекта падает на сцинтиллятор и переизлучается в его объеме уже в видимом диапазоне. Если люминафор будет толстым, то изображение расплывется из-за рассеяния света. «Поэтому чтобы разглядеть микрообъекты, толщина сцинтиллятора должна быть малой, но достаточно толстой для эффективной регистрации рентгеновского излучения (в нашем случае 3 мкм)», — комментирует младший научный сотрудник ИЯФ СО РАН Алексей Валентинович Петрожицкий.
Одной из главных проблем является создание таких тонких пленок сцинтиллятора высокого качества. Исследователям из ИЯФ СО РАН удалось решить её с помощью специально разработанной технологии.
«Цезий-йод, активированный таллием, при нагреве выше температуры плавления, испаряется и оседает на специальной подложке. Искусство состоит в том, чтобы правильно подобрать режим, позволяющий напылять очень тонкие и равномерные плёнки, — комментирует Александр Попов. — На сегодняшний день для тонких сцинтилляторов эта методика уже практически отработана, и ожидать каких-то кардинальных улучшений в чём-либо там не приходится. Мы пытаемся решить проблему создания толстых люминофоров для эффективной регистрации рентгеновского излучения с разрешением 20-50 мкм, что может быть интересно уже медикам».
Тонкий сцинтиллятор выдаёт слишком мало видимого света, которого вполне хватает для изучения мухи-дрозофилы, но не гораздо более плотных объектов. Например, чтобы рассмотреть ткани человека, потребуется высокоэнергичное рентгеновское излучение, и при этом поглощенная пациентом доза должна быть минимальной. «Чтобы сцинтиллятор был максимально эффективным, он должен быть толстым, что позволит уменьшить дозу, поглощенную в процессе съемки без ухудшения изображения — это сегодня основное направление исследований нашей группы», — говорит Алексей Петрожицкий.
Сделанная исследователями ИЯФ установка для рентгеновской вычислительной томографии на основе созданных тонких сцинтилляционных пленок позволяет в подробностях разглядеть один из самых востребованных биологических объектов — муху-дрозофилу. Становятся видны ее внутреннее строение, а также структура волосяного покрова, хоботок, количество трубок в ножках и другие детали.
Также метод поможет оптимизировать геологические исследования при определении минерального состава и текстурно-структурных особенностей горных пород и промышленных руд, которые присутствуют в виде мельчайших, еле заметных глазу «крошек». «Если отнести образец породы нам, мы в течение нескольких часов получим всю необходимую информацию по структуре и довольно быстро сделаем представительную трёхмерную картинку», — говорит Александр Попов.
«С помощью нашей установки можно будет буквально за час посмотреть внутреннюю структуру осколка метеорита, чтобы потом сделать выводы о температурах, в которых находился образец, и процессах, происходивших в нём во время падения, — рассказывает старший научный сотрудник ИЯФ СО РАН кандидат физико-математических наук Константин Эдуардович Купер. — Метод представляет интерес и для тех, кто занимается созданием новых материалов. Он позволяет узнать, как ведёт себя структура композитов при механических воздействиях, понять, образовались ли трещины, и если да, то в каких местах».
Томография интересна также и археологам — в частности, в том, что касается определения возраста археологических комплексов, содержащих древесину. Дело в том, что древние изделия из дерева нельзя исследовать обычными способами, которые применимы в дендрохронологии, так как все они связаны с разрушающим воздействием на объект.
Также с помощью рентгеновской вычислительной томографии можно наблюдать с высоким разрешением клетку в естественной для неё водной среде обитания, in vivo (электронная микроскопия работает только с высушенной, то есть уже погибшей клеткой). Либо проследить, как происходит истончение костной ткани при формировании остеопороза, который является четвёртым по значимости заболеванием у женщин.
Синхротронное излучение обладает достаточным количеством преимуществ по сравнению с обычными рентгеновскими аппаратами. Однако оно дорогостоящее, и его можно получить только на циклических электронных ускорителях.
«В настоящее время СИ является одним из основных инструментов для развития самых разных наук — физики, материаловедения, химии, катализа, биологии, археологии, геологии. В ИЯФ СО РАН работы с СИ проводятся на установках ВЭПП-3 и ВЭПП-4, которые не являются специализированными источниками этого излучения. Эксперименты с СИ чередуются с исследованиями по физике элементарных частиц на встречных пучках.
В России существует только два научных центра по использованию синхротронного излучения (в ИЯФ СО РАН и в НИЦ Курчатовский Институт), при этом параметры наших источников сильно уступают аналогичным современным установкам, работающим во всем мире, так как были разработаны и созданы более 30 лет назад. Поэтому чтобы не допустить отставания в этой области исследований нужно строить современные специализированные источники СИ, потребность в них большая», — говорят исследователи.
«Какой-то одной проблемы, которая однозначно определила бы актуальность создания установок СИ, нет. Однако таких задач очень много, и только в совокупности они обуславливают потребность в новых источниках синхротронного излучения», — комментирует Евгений Козырев.
Учёные отмечают: для дальнейшего развития рентгеновской микроскопии им необходима совместная работа с представителями других наук, и говорят, что будут рады сотрудничеству с биологами, геологами и всеми остальными, кого заинтересуют их исследования.
Диана Хомякова
Фото: (1) — автора, остальные предоставлены исследователями