Специалисты Института ядерной физики им. Г. И. Будкера СО РАН представили новое поколение инжекторов атомарных пучков с обновленной ионно-оптической системой (ИОС) — сердцем всего устройства. Благодаря инновационным решениям, успешно реализованным в новой версии системы, инжекторы атомарных пучков ИЯФ СО РАН смогут работать в установках нового поколения — со стационарным удержанием плазмы. На новую ионно-оптическую систему был получен патент.
«Для осуществления термоядерной реакции необходимо нагреть водородную плазму до температуры в сотни миллионов градусов. Наиболее эффективным способом нагрева является инжекция пучков быстрых атомов, которые получаются методом ускорения первичных ионных пучков водорода до высоких энергий с последующим преобразованием их в атомы посредством нейтрализации, — прокомментировал ведущий научный сотрудник ИЯФ СО РАН кандидат физико-математических наук Пётр Петрович Дейчули. — Есть еще один-два способа, например, нагрев высокочастотным излучением, но они достаточно сложны физически и технически, особенно на самых высоких мощностях и температурах плазмы. В свое время специалисты ИЯФ разработали ряд технологических решений и создали целую серию атомарных инжекторов, которые стали использоваться по всему миру. Иметь у себя на установке будкеровский инжектор в мировом плазменном сообществе считается хорошим тоном. Однако это были инжекторы для импульсных магнитных систем, в которых плазма удерживается в горячем состоянии одну-две секунды».
Полученные в экспериментах по управляемому термоядерному синтезу результаты позволили физикам-плазмистам перейти на новый этап исследований — стационарный, при котором плазма удерживается в нагретом состоянии не единицы, а сотни и даже тысячи секунд. Мировым рекордом на данный момент является результат китайского токамака EAST, на котором ученым удалось удержать плазму, нагретую до температуры в 70 миллионов градусов, в течение 1000 секунд.
«В связи с этим возникла потребность в разработке и создании усовершенствованных инжекторов мощных атомарных пучков, которые смогут работать в стационарном режиме, — пояснил Пётр Дейчули. — В первую очередь требовала изменений ИОС инжектора, в которой происходит самое важное — она вытягивает положительные ионы из плазмы, ускоряет их до нужной нам энергии и формирует пучок предельно малой расходимости. Система эта очень чувствительна к температурным нагрузкам. На данный момент нашей группой предложена новая технологичная конструкция ионно-оптической системы для инжектора, который разрабатывается в рамках прикладных государственных заданий Минобрнауки, заказчикам которых является ГК “Росатом”».
Надежность любой ионно-оптической системы определяется двумя факторами — качеством формирования первичного ионного пучка и электрической прочностью. В большей степени влияние на них оказывают термодеформации электродов. Новая ионно-оптическая система имеет ряд преимуществ, которые обеспечивают ее надежность.
«Возможная длительность работы ионно-оптической системы определяет длительность работы инжектора в целом, — прокомментировал ведущий инженер-конструктор ИЯФ СО Владислав Харисович Амиров. — В первую очередь это зависит от того, как длительно электроды смогут сохранять свою геометрическую форму, потому что их нагрев и последующая деформация — самое страшное (губительное) для системы. Причиной нагрева являются вторичные частицы, которые рождаются в процессе вытягивания, формирования и ускорения первичного ионного пучка. Именно они существенно нагревают электроды. Для инжекторов нового поколения мы разработали новую ионно-оптическую систему, в которой реализован ряд технических и конструктивных решений, позволяющих поддерживать уровень деформаций электродов на приемлемом уровне. Во-первых, мы разбили эмиссионную площадь большого размера на сегменты, что само по себе дало снижение деформации. Во-вторых, каждый сегмент оснастили внутренними каналами охлаждения, в которых возможно поддержание необходимого уровня интенсивности теплообмена, и обеспечили подвод к ним требуемого расхода охлаждающей жидкости».
В данной конструкции ИОС все эмиссионные сегменты устанавливаются на общий держатель-коллектор, опирающийся на стойки-изоляторы. Для лучшей компактности всего устройства часть водяной магистрали системы охлаждения электродов специалисты проложили внутри держателя и опорных стоек-изоляторов. Все это, а также специальная конструкция регулировочных шайб, обеспечивает лучшую точность юстирования системы, от которой зависит качество пучка.
«Благодаря компетенциям и опыту коллектива ИЯФ нам удалось разработать новую конструктивную схему ионно-оптической системы инжекторов быстрых атомов для экспериментов со стационарным нагревом и удержанием плазмы, — добавил Владислав Амиров. — В процессе создания системы была использована разработанная нами методика программного моделирования. Ее эффективность подтверждена надежной работой ионно-оптических систем в инжекторах, использующихся в различных экспериментах. Методика позволяет моделировать поведение электродов в условиях реальных нагрузок, вносить нужные улучшения в конструкцию. Таким образом мы избегаем дорогостоящих и длительных циклов разработки типа “проектирование — изготовление — испытание”, существенно сокращая срок создания системы. На данный момент заканчивается производство компонентов ионно-оптической системы в экспериментальном производстве ИЯФ СО РАН».
Потенциальные заказчики инжекторов ИЯФ СО РАН: АО «ГНЦ РФ ТРИНИТИ» — для проектируемого токамака с реакторными технологиями TРT; Физико-технический институт им. А.Ф. Иоффе РАН — для проектируемого токамака Глобус-3; НИЦ «Курчатовский институт» (токамак Т-15 МД).
Пресс-служба ИЯФ СО РАН