Ученые разработали новый микрорезонатор с увеличенной добротностью, которой можно управлять. Достичь этого эффекта позволяет фотонный кристалл в структуре устройства. Такая особенность значительно повышает эффективность микрорезонатора и позволяет создавать на его основе энергоэффективные микролазеры, поглотители света и сенсоры. Работа опубликована в журнале Applied Physics Letters.
Микрорезонаторы — это устройства, которые позволяет накапливать световую энергию. Их часто называют технологиями будущего, поскольку они обладают уникальными свойствами: компактным размером, быстродействием, малым энергопотреблением, и представляют значительный потенциал для различных приложений в будущем. Перспективы использования микрорезонаторов включают передачу информации на высоких скоростях, базовые элементы для квантовых процессоров, высокочувствительные сенсорные системы и другие применения в фотонике.
Ученые ФИЦ «Красноярский научный центр СО РАН» создали металл-диэлектрический оптический микрорезонатор с управляемой добротностью — ключевым параметром, определяющим возможности применения устройства. Разработанное устройство обладает слоистой структурой, где в качестве резонаторного слоя используется жидкий кристалл. Из-за чувствительности жидкого кристалла к внешним факторам можно регулировать и настраивать добротность за счет нагрева образца и подачи электричества на слой жидкого кристалла.
«Мы разработали микрорезонатор, который состоит из фотонного кристалла и полупрозрачного слоя золота. Фотонный кристалл — это последовательно повторяющиеся слои разных диэлектриков. Он создан таким образом, чтобы отражать видимый свет. Зеркала из фотонных кристаллов имеют материальные потери меньше, чем металлические, что влияет на основную характеристику микрорезонатора — добротность. Добротность микрорезонатора тем больше, чем больше времени в нем удерживается свет. Особенностью нашего устройства является то, что применение в качестве одного из зеркал полупрозрачного слоя золота позволяет нам работать как с прошедшим, так и с отраженным от него светом», — рассказал один из авторов работы инженер ФИЦ КНЦ СО РАН Гавриил Александрович Романенко.
Добротность микрорезонатора определяется его способностью сохранять энергию. Устройства с более высокой добротностью могут сохранять энергию в течение более длительного времени и выполнять свои задачи более эффективно. Новая конструкция микрорезонатора с фотонным кристаллом позволила обеспечить управление добротностью, которая в обычных резонаторах не может быть изменена в процессе их использования. Максимальное значение добротности в процессе использования микрорезонатора изменялось в два раза.
«Добротность микрорезонатора определяется двумя видами потерь, а именно, свет может поглощаться веществом микрорезонатора, а также вытекать из него через зеркала. Новизна нашей работы заключается в том, что мы научились управлять вторым видом потерь. Для этого полость между зеркалами была заполнена жидким кристаллом. Нагревание жидкого кристалла или приложение к нему внешнего напряжения изменяет его оптические свойства, что влияет на скорость утечки света из микрорезонатора. Предложенный нами микрорезонатор с управляемой добротностью может быть использован при создании энергоэффективных устройств фотоники, например, микролазеров, совершенных поглотителей света и сенсоров», — заключил научный сотрудник Института физики им. Л. В. Киренского ФИЦ КНЦ СО РАН кандидат физико-математических наук Павел Сергеевич Панкин.
В работе также принимали участие специалисты Сибирского федерального университета, Сибирского государственного университета науки и технологий им. академика М.Ф. Решетнева, АО НПП «Радиосвязь», НПК «Спецтехнаука» и Национального университета Цинь Хуа (Тайвань). Исследование выполнено при поддержке Российского научного фонда (проект №22-42-08003).
Группа научных коммуникаций ФИЦ КНЦ СО РАН