Сибирь удивляет: самоочищающиеся ткани и комплексная термо- и рентгенографическая функциональная диагностика

 
Председателю правительства Российской Федерации был направлен пакет технологий и разработок сибирских ученых, которые можно применить в борьбе с коронавирусной инфекцией и ее последствиями.
     
Ранее, на совещании президента России Владимира Владимировича Путина с членами правительства РФ, вице-премьер Татьяна Алексеевна Голикова отметила: «Проверяем еще 22 новых лекарственных препарата, которые представлены Сибирским отделением Российской академии наук, и тоже достоверные результаты получим 10 апреля 2020 года».
     
В настоящее время сформирован еще и пакет технологий для скорейшего внедрения. Часть предложений отвечает на самые острые проблемы и вызовы, стоящие перед медициной и промышленностью. 
     
Высокая смертность при COVID-19, в числе прочего, обусловлена обострением хронических заболеваний или наличием сопутствующих патологий, не выявленных при первичной диагностике и оказавшихся фатальными при соблюдении стандартного медицинского протокола. Выявить все хронические заболевания у пациентов в период ремиссии или скрытого течения зачастую не представляется возможным в рамках общих анализов и стандартных диагностических методов, использующихся при госпитализации, особенно при большом входящем потоке пациентов. Ряд институтов, находящихся под научно-методическим руководством Сибирского отделения РАН, уже длительное время работает с термографией и рентгенографией. Так, Новосибирский государственный университет давно и серьезно прорабатывает применение искусственного интеллекта и глубокого машинного обучения для автоматизации, повышения качества и скорости, снижения стоимости обработки данных методов КТ (компьютерная томография), МРТ, флюорографии, ПЭТ КТ, рентгенографии (в том числе с контрастным веществом), ПЭТ, УЗИ, эндоскопических методов ФГДС, а Институт вычислительных технологий СО РАН занимается прикладными исследованиями в области машинного зрения и методов анализа медицинских изображений, в том числе расшифровки термограмм.
     
«В основе медицинской тепловизионной визуализации лежит глубокая связь температурных градиентов на коже человека с процессами, происходящими в организме. Сущность тепловизионного метода заключается в представлении человеку (врачу) визуализированного инфракрасного изображения, создаваемого на поверхности тела за счет работы вегетативной нервной системы, что вызывает изменение кровоснабжения подкожной сосудистой сети в местах (рефлексогенных зонах), соответствующих тому или иному внутреннему органу. Следовательно, осуществляется визуализация не структурных особенностей внутренних органов человека, как это имеет место при ультразвуковом, рентгеновском и других методах активной лучевой диагностики, а функциональных изменений, несущих информацию о любых нормальных и патологических процессах в организме», — сказал директор ООО «Хелс-Сервис» Валерий Яковлевич Беленький, посвятивший изучению метода термографической диагностики более 30-и лет и создавший уникальную базу данных в этой области совместно с рядом медицинских и ЛПУ-учреждений Сибирского региона.
     
Начало медицинской термографии (тепловидения) следует датировать 1956 годом, когда появилась первая публикация канадского ученого Роберта Лаусона. В ней он описал первый опыт применения рассекреченных в американской армии инфракрасных (ИК) эвапорографов «Бэрд» и «Рекси» для диагностики медицинской патологии. Тепловизионные исследования в СССР впервые были начаты в 1960-х гг. при помощи прибора «Тепловизор», изготовленного во Всесоюзном электротехническом институте, и «Тепловизор 171-Т1», созданного в ГОИ им. С. И. Вавилова. Среди первых работ в области практического здравоохранения огромное значение имеют исследования под руководством академика Бориса Васильевича Петровского во Всесоюзном НИИ клинической и экспериментальной хирургии АМН СССР, Москва, в котором были разработаны методики тепловизионной диагностики различной сосудистой патологии.
     
«С развитием цифровых тепловизоров, повышением их температурной точности и разрешения появилась возможность автоматического и автоматизированного компьютерного анализа получаемых с них изображений и даже видеоряда. Медицинская термография, имея достаточно глубокие корни, с внедрением методов компьютерного анализа получает новую жизнь. Особую важность получают подходы на основе анализа мультимодальных данных, объединяющих термографию с другими диагностическими методами. Институт вычислительных технологий СО РАН имеет более чем десятилетний опыт разработки методов и технологий анализа изображений, применяя его в анализе данных дистанционного зондирования Земли, около пяти лет опыта в области анализа медицинских изображений и серий изображений (томограмм), а в последние полтора-два года активно погружен в задачи предметного анализа именно термографических снимков с применением методов искусственного интеллекта (машинное обучение) и комбинированием их с классическими и ансамблевыми методами кластеризации и классификации объектов на изображениях», — прокомментировал первый заместитель директора ИВТ СО РАН кандидат физико-математических наук Андрей Васильевич Юрченко.
     
Он предложил совместить в одной программной системе термографический и рентгенографический источники данных (мультимодальный подход), с автоматическим картированием органов и систем на основе контуров рентгеновского снимка, учитывая при этом индекс массы тела и процент жировых отложений для коррекции параметров термографической диагностики. Подход назвали «Комплексная термо- и рентгенографическая функциональная диагностика для формирования прогнозного сценария осложнений при COVID-19». Новой диагностической методике предстоит пройти тестирование и получить одобрение для массового внедрения, а также получить незначительную финансовую поддержку на доработку соответствующего программного обеспечения.
     
Техническое обеспечение методики — современный рентгеновский аппарат, персональный компьютер, а также мобильный термовизор, например тепловизор SVIT отечественного производства, разработанный и выпускаемый в Институте физики полупроводников им. А. В. Ржанова СО РАН. Приемным элементом этого тепловизора служит двумерная матрица полупроводниковых конденсаторов на основе арсенида индия (InAs), установленная в фокальной плоскости инфракрасного объектива, по чувствительности превосходящая все существующие мировые аналоги. Отечественная элементная база и программное обеспечение позволят быстро внедрить и масштабировать технологию, наращивая точность диагностики в нейросети с каждым новым загруженным и расшифрованным снимком.
     
Другая инновационная технология — самоочищающиеся фотоактивные тканевые материалы, созданные ФИЦ «Институт катализа им. Г. К. Борескова СО РАН», могут помочь в решении второй серьезной проблемы: обеспечения медперсонала и лаборантов средствами индивидуальной защиты (СИЗ). О проблеме их острой нехватки на одном из совещаний по вопросам развития ситуации с коронавирусной инфекцией и мерам по ее профилактике сообщил министр промышленности и торговли РФ Денис Валентинович Мантуров.
     
Для производства фотоактивных материалов по методике ФИЦ ИК СО РАН подходят как хлопковые, так и полиэфирные ткани, которые обрабатываются нанокристаллическим диоксидом титана. Предложенный подход позволяет получать устойчивые к стирке и стабильные во времени самоочищающиеся от вирусов и бактерий текстильные материалы. Самоочистка и обеззараживание одежды, изготовленной из такого материала, происходит как во время ночного хранения, сопровождающегося воздействием мягкого УФ-излучения, так и в процессе носки под действием солнечного освещения.
     
Поиск и экспертиза перспективных препаратов и технологий в рамках МРГ продолжаются.
 
Источник: сайт ИВТ СО РАН